
This project has received funding from the European Union’ s Horizon 2020 research and innovation programme under grant agreement No 691883

Deliverable 6.3: Data Model Architecture

Implementation.

WP6, Task 6.3

Date of document

31/07/2017 (M18)

Deliverable Version: D6.3, V1.0

Dissemination Level: PU1

Author(s):
Alain Perez (MU), Enaitz Ezpeleta (MU), Felix Larrinaga
(MU), Iñaki Arenaza (MU) Jose Luis Izkara (TEC), Alvaro
Arroyo (GIS), Mauri Benedito (GIS), Jose Antonio
Sanchez (GIS), Natividad Herrasti (ETIC), Aitor Akizu
(ETIC), Josu Rollón (MTEL), Raquel Garcia (ACC), Alvaro
Garcia (ACC), Urmo Lehtsalu (ET), Priit Kallas (ET),
Jørgen Raun Petersen (VG), Patxi Sáez de Viteri (MON)

1
 PU = Public

PP = Restricted to other programme participants (including the Commission Services)

RE = Restricted to a group specified by the consortium (including the Commission Services)

CO = Confidential, only for members of the consortium (including the Commission Services)

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 2 / 57

Document History

Project Acronym SmartEnCity

Project Title Towards Smart Zero CO2 Cities across Europe

Project Coordinator Francisco Rodriguez

Tecnalia

francisco.rodriguez@tecnalia.com

Project Duration 1
st
 February 2016 - 31

st
 July 2021 (66 months)

Deliverable No. D6.3 Data Model Architecture Implementation.

Diss. Level Public

Deliverable Lead MON

Status Working

 Verified by other WPs

X Final version

Due date of deliverable 31/07/2017

Actual submission date 28/07/2017

Work Package WP 6 - City Information Open Platform (CIOP)

WP Lead MON

Contributing
beneficiary(ies)

TEC, MON, MTEL, ETIC, GIS, VG, ET

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 3 / 57

Copyright notice

© 2016-2021SmartEnCity Consortium Partners. All rights reserved. All contents are reserved by default and may

not be disclosed to third parties without the written consent of the SmartEnCity partners, except as mandated by

the European Commission contract, for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are acknowledged and owned

by the respective holders. The information contained in this document represents the views of SmartEnCity

members as of the date they are published. The SmartEnCity consortium does not guarantee that any information

contained herein is error-free, or up to date, nor makes warranties, express, implied, or statutory, by publishing

this document.

Date Version Person/Partner Comments

21/03/2017 0.1 Mondragon Unibertsitatea
(MGEP-MU)

First Draft for the ToC

07/04/2017 0.2 Alain Perez, Enaitz Ezpeleta,
Iñaki Arenaza, Felix Larrinaga

MGEP-MU

Jose Luis Izkara/TEC

Alvaro Arroyo/GIS

Contributions to 4.2.1, 4.2.2,
4.2.3, 4.2.4, 4.2.5 and 5.2.1

27/04/2017 0.3 Alain Perez, Iñaki Arenaza
MGEP-MU

Natividad Herrasti/ETIC

José L. Hernández/CAR

Contributions to 4.2.2, 4.2.6,
4.2.8 (removed) and 5.2.1.

Edited figures 3 & 6

29/06/2017 0.4 Felix Larrinaga, Enaitz Ezpeleta
MGEP-MU,

Mauri Benedito, Jose Antonio
Sanchez /GIS

Contribution to 1.3, 2, 3 and 4
(section 4.1). Writing of 5.1, 5.2
(5.2.1 and parts of 5.2.2)

07/07/2017 0.5 Alain Perez, Iñaki Arenaza, Felix
Larrinaga MGEP-MU,

 Raquel Garcia (ACC)

Jose Luis Izkara/TEC

Mauri Benedito, Jose Antonio
Sanchez /GIS

Contribution to 1.2, changes to 4
(section 4.1). Writing of 5.2
(5.2.3 and parts of 5.2.2) and 6

13/07/2017 0.6 Alain Perez, Iñaki Arenaza, Felix
Larrinaga MGEP-MU

Natividad Herrasti, Aitor
Akizu/ETIC

Mauri Benedito, Jose Antonio
Sanchez /GIS

Urmo Lehtsalu, Priit Kallas (ET),

Jørgen Raun Petersen (VG),

Contribution to 1.2, changes to 4
(section 4.1.8). Writing of 5.2
(5.2.3 and 5.2.4)

27/07/2017 1.0
Felix Larrinaga (MGEP-MU) Reviews by TEC, VG and TE.

Final version

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 4 / 57

Table of content:

0 Publishable Summary .. 8

1 Introduction .. 9

1.1 Purpose and target group .. 9

1.2 Contributions of partners ..10

1.3 Relation to other activities in the project ...11

1.4 Reference Architecture and Demonstrator (data models)11

2 Objectives ...13

2.1 Objectives of WP ..13

2.2 Objectives of Task 6.3 ..13

3 Overall Approach...15

4 SmartEnCity CIOP Reference Architecture Data Models...16

4.1 Reference Architecture in SmartEnCity ..16

4.2 Data Models ...18

4.2.1 Vertical Data Repository ..18

4.2.2 KPI Repository ..19

4.2.3 Historical Data Repository ...19

4.2.4 Structural Data Repository ..20

4.2.5 GIS Structural Data Repository ...20

4.2.6 GIS Repository ..21

4.2.7 Configuration Repository ...21

4.2.8 Real Time Repository ..21

5 SmartEnCity Demonstrator (Data Model) ..23

5.1 Demonstrator design and development ..23

5.2 Demonstrator Description ...25

5.2.1 Demonstrator data flow ...26

5.2.2 Data Models for demonstrator ...27

5.2.3 User Guide ..51

5.2.4 RA Demonstrator Functionality map ..55

6 Conclusions, deviations and outputs for other WPs ...56

7 References ..57

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 5 / 57

Table of Tables:

Table 1: Abbreviations and Acronyms .. 7

Table 2: Contribution of partners ..10

Table 3: Relation to other activities in the project ...11

Table 4: RA functionality – Platform functionality matching ...55

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 6 / 57

Table of Figures:

Figure 1: Architecture building approach ...15

Figure 2: Smart Cities General Architecture ..16

Figure 3: Data Models for CIOP ...18

Figure 4 Data Process lifecycle ...24

Figure 5: Architecture of the demonstrator. ...26

Figure 6: Related data models and data flow. ..27

Figure 7: Vertical Data Model for the Demonstrator. ...28

Figure 8: The KPI data model for the desmostrator. ..30

Figure 9: Example of historical repository structure ...32

Figure 10: Structural data model for the demonstrator ...33

Figure 11 CityGML Modules ..34

Figure 12 Simplified version of UML diagram of building model in CityGML.35

Figure 13: Building database schema ..39

Figure 14: Building example in database ...40

Figure 15: Thematic surface example in database...41

Figure 16: Surface geometry example in database ..41

Figure 17 Structure of GIS Repository ..42

Figure 18: Real time repository data model for the demonstrator48

Figure 19: Viewer elements: zoom tools (1), map layers (2) and reports window (3)51

Figure 20: Map tip ...54

Figure 21: Report Window ...54

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 7 / 57

Abbreviations and Acronyms

Table 1: Abbreviations and Acronyms

Abbreviation/Acronym Description

AENOR Asociación Española de Normalización y Certificación

API Application programming interface

CIOP City Information Open Platform

CityGML City Geography Mark-up Language

ESCO Energy Savings Company

EC European Commission

EV Electric Vehicle

GIS Geographic Information Systems

HDFS Hadoop Distributed File System

HMI Human Machine Interface

ICT Information and Communication Technologies

IoT Internet of Things

IUP Integrated Urban Plans

JSON JavaScript Object Notation

KPI Key Performance Indicator

MySQL My Structured Query Language

NoSQL No Structured Query Language

OGC Open Geospatial Consortium

OS Operating System

OSM OpenStreetMap

RA Reference Architecture

RDF Resource Description Framework

REST Representational State Transfer

SCADA Supervisory Control And Data Acquisition

SmartEnCity Towards Smart Zero CO2 Cities across Europe

SQL Structured Query Language

UNE Una Norma Española

WCS Web Coverage Service

WFS WORLDWIDE FLIGHT SERVICES

WP Work Package

WMS Web Map Service

EU European Union

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 8 / 57

0 Publishable Summary

SmartEnCity focuses on the development of a highly adaptable and replicable systemic

approach towards urban transformation into sustainable, smart and resource efficient urban

environments in Europe, through the planning and implementation of measures aimed at

improving energy efficiency in the main consuming sectors in cities and increasing the supply

of renewable energy. This approach will be defined in detail, and subsequently laid out and

implemented in the three Lighthouse demonstrators (Vitoria-Gasteiz in Spain, Tartu in

Estonia and Sonderborg in Denmark), to be further refined and replicated with the

development of Integrated Urban Plans (IUPs) in all participant (both Lighthouse and

Follower) Cities.

WP6 aims to devise a common ICT platform that will be the reference for the deployment of

the “City Information Open Platform” (CIOP) in each one of the pilot lighthouse projects. The

platform will provide a standardized data model to accommodate data from each pilot and

will also define standardized services and modules for data consumers, especially relevant

are those related to the monitoring of SmartEnCity KPIs, those requested by the EC in the

call and those identified as ICT solutions for the project.

Deliverable D6.3 presents the results of Task 6.3 “Data Model Architecture Implementation”

within WP6 of the SmartEnCity project. The main objective for this task is to design and

implement the data models that will accommodate data coming from the different data

sources and demonstrators. The task included the following activities:

 Selection of data identifying the systems deployed in the demonstrators and considering

the different stakeholders. The selection will be based on the ICT solution requirements

and the Key Performance Indicators (KPI) to be measured in the project.

 Analysis, selection and design of the data models for the platform considering Smart City

projects data models.

 Design and Deployment of the infrastructure to accommodate the data models.

 Test and validation of the data models.

Two are the results presented in this task. The first result is a demonstrator available online

(see section 0). The demonstrator or prototype is a platform where the data models

necessary for SmartEnCity are implemented. The deployed platform agrees with the

Reference Architecture described in Task 6.2 (SmartEnCityD6.2, 2017). The demonstrator

offers the data models necessary to build the CIOP in the lighthouses. The demonstrator has

been constructed using different technologies (SQL, HDFS …).

The second result is this document. This document presents a description of the Reference

Architecture (RA) data models proposed for the CIOP. The document includes a general

description of the different data models that compose the architecture. The document also

presents:

 The approach or methodology followed to obtain both results (RA and prototype)

 Access to the demonstrator users guide (online)

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 9 / 57

1 Introduction

1.1 Purpose and target group

This report constitutes part of the deliverable “D6.3 – Data Model Architecture

Implementation”. This report presents a demonstrator that implements data models for a

specific data flow according to the Reference Architecture proposed for the SmartEnCity

project. The report presents the description of the demonstrator and the process followed to

construct that prototype, which is a specific instantiation of the Reference Architecture for a

data flow. A data flow is the process data follows from the moment it enters the platform until

it is consumed by an application. In that process, data can be transformed and stored in

different data models depending on the requirements specified for that business case.

The main objective is to demonstrate the capability of building Data Models according to a

Reference Architecture. Some of the data models constructed for this demonstrator will be

shared by different data flows while others are specific to the data flow presented in this

document. New data flows will be designed and build during pilot construction following their

specific requirements. The demonstrator or prototype presented in this task has been

deployed using standard technologies and tools that can be accessed through Internet and

used in the context of a Smart City project.

The main activities carried out in this task are listed here:

 Selection of data. Identify which data are offered by the systems deployed in the

demonstrators and select those required by the different stakeholders. The selection

will be based on the ICT solution requirements and the Key Performance Indicators

(KPI) to be measured in the project.

 Analysis, selection and design of the data models for the platform considering Smart

City projects data models. Depending on the data selected and its behaviour different

alternatives will be considered and selected.

 Design and Deployment of the infrastructure to accommodate the data models.

 Test and validation of the data models.

This report is structured in the following sections.

This section presents the purpose of the document, its relation with other WP and

deliverables, and how the demonstrators are created from the SmartEnCity reference model.

Section 2 presents the objectives pursued in Task 6.3.

Section 3 presents the approach followed in constructing the architecture model and the data

models including the methodology.

Section 4 identifies the data models or repositories necessary to build the Reference

Architecture in SmartEnCity. The section presents a description of those data models

indicating their characteristics (frequency, volume …) type of data expected, their relation

with other repositories and the technologies more suitable for their implementation.

Section 5 includes a description of the demonstrator and its capabilities. The section

presents the design and development process followed to build the demonstrator and its data

flow. It also presents the data models implemented in the demonstrator and a user guide.

Section 6 presents the main conclusions.

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 10 / 57

Section 7 presents the references used in the document.

Main target group of the information, the demonstrator and the conclusions collected in this

deliverable are the partners in charge of the development of the CIOP platform at use case

level. That is at city level in Work Packages 3, 4 and 5. Follower cities could also take

advantages of the findings and results produced in this task.

1.2 Contributions of partners

The following Table 2 depicts the main contributions from participant partners in the

development of this deliverable.

Participant

short name

Contributions

MON/MGEP Task Leader. Responsible of the demonstrator (deliverable).

Responsible of the content in this document.

Main contributor in Section 1 (Introduction), Section 2 (Objectives and Principles), Section 3

(Overall Approach), several subsection of Section 4 (4.2, 4.2.1, 4.2.2, 4.2.3, 4.2.4), several

subsection of Section 0 (5.1, 0, 5.2.1, 5.2.2, 5.2.3, 5.2.4) and Section 6 (Conclusions).

Has reviewed contributions to all the sections.

Has contributed in the development of the demonstrator.

ET Has reviewed contributions.

Main contributor in Section 4 (4.2.8)

TEC Main contributor in Section 4 (4.2.5, 4.2.6) and Section 0 (5.2.2, 5.2.4).

Has reviewed contributions.

Has contributed in the development of the demonstrator.

ETIC Provider of infrastructure

Main contributor in Section 4 (4.2.1, 4.2.7), and Section 0 (0, 5.2.1, 5.2.2, 5.2.3, 5.2.4).

Has reviewed contributions.

Has contributed in the development of the demonstrator.

CAR Main contributor in Section 4 (4.2.2).

Has reviewed contributions.

ACC Main contributor in Section 5 (5.2.2, 5.2.3).

Has reviewed contributions.

Has contributed in the development of the demonstrator.

MTEL Provider of infrastructure.

Has contributed in the development of the demonstrator.

GIS Provider of infrastructure

Main contributor in Section 4 (4.2.5, 4.2.6), and Section 0 (5.1, 0, 5.2.1, 5.2.2, 5.2.3, 5.2.4).

Has reviewed contributions.

Has contributed in the development of the demonstrator.

VG Has reviewed contributions.

Main contributor in Section 4 (4.2.8)

Table 2: Contribution of partners

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 11 / 57

1.3 Relation to other activities in the project

The following Table 3 depicts the main relationship of this deliverable to other activities (or

deliverables) developed within the SmartEnCity project and that should be considered along

with this document for further understanding of its contents.

Deliverable

Number

Contributions

D6.1 This deliverable provides the requirements identified for SmartEnCity

D6.2 This demonstrator presents the Reference Architecture for SmartEnCity

D6.4 This demonstrator extends D6.2 considering the interoperability needs for

SmartEnCity.

WP3, WP4 and

WP5

The implementation in each lighthouse will agree with the Reference Architecture

and the layers and modules defined in it. Data models will be implemented there

WP7 KPIs are defined in that work package. Data Models for KPIs have been built

according to D7.2 and data flow construction in SmartEnCity CIOP is outlined in

D7.9 (Task 7.3)

Table 3: Relation to other activities in the project

1.4 Reference Architecture and Demonstrator (data models)

As it was done in (SmartEnCityD6.2, 2017) it is necessary to outline the differences between
a Reference Architecture and a demonstrator. According to (Wikipedia, 2016) (based on
ISO/IEC/IEEE 42010) reference architectures provide a template solution for the architecture
(aka. architectural blueprint) for a particular domain. It also provides a common
vocabulary with which to discuss implementations, often with the aim to stress
commonality.

A reference architecture often consists of a list of layers, modules and functions and
some indication of their interfaces (or APIs) and interactions with each other and with
elements located outside of the scope of the reference architecture.

Reference architectures provide a template, often based on the generalization of a set of
solutions. These solutions may have been generalized and structured for the depiction of
one or more architecture structures based on the harvesting of a set of patterns that have
been observed in a number of successful implementations. Further it shows how to compose
these parts together into a solution. Reference architectures will be instantiated for a
particular domain or for specific projects.

A demonstrator or prototype consists on a technological solution that fulfils the requirements
of a Reference Architecture and provides the modules and functionality specific for the
domain it represents. Several demonstrators build with different technologies and
frameworks can agree with a common Reference Architecture and be consequently valid
instantiations or implementations of that architecture.

In (SmartEnCityD6.2, 2017) the Reference Architecture proposed for SmartEnCity was
presented. The SmartEnCity Reference Architecture is a layered model based on UNE
178104:2015 (AENOR CTN-178 group standard) (AENOR CTN-178, 2015). The
demonstrator presented in this document is an instantiation of that Reference Architecture

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 12 / 57

considering the Data Models to be constructed. Each demonstrator could use different
technologies and frameworks to construct Data Models and at the same time agree with the
Reference Architecture.

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 13 / 57

2 Objectives

2.1 Objectives of WP

As stated in the Grant Agreement, the overall objective in this work package is to devise a

common ICT platform that will be the reference for the deployment of the “City Information

Open Platform” in each one of the pilot lighthouse projects. The detailed objectives of the

work package are:

 Define the specifications of the platform. Functional and non-functional requirements

must be identified considering the overall expected performance of the platform.

(Done in (SmartEnCityD6.1, 2016)).

 Define and provide the infrastructure or technological architecture that will enable

gathering information from the different verticals (building retrofitting, district heating,

smart grid, smart mobility) and offer data to the consumer applications (web

applications, reports, control algorithms etc.) This is the main objective of this

task/deliverable (Done in (SmartEnCityD6.2, 2017)).

 Provide a data model that will accommodate data from different sources such as

electric vehicle charging points, appliances and lighting systems in dwellings, district

heating Supervisory Control And Data Acquisition (SCADA) systems, data collected

by utilities with smart meters, data from building elements (lifts, lighting systems…).

(This Deliverable D 6.3)

 Provide the mechanisms and protocols to ease interconnection between platform

modules and to allow data uploading/consuming from the different sources,

enhancing interoperability between the platform and other systems. (Deliverable 6.4)

 Provide the mechanisms to build ICT solutions for different stakeholders offering

actionable information and recommendations, to empower citizens on decision

making in relation to home energy consumption and mobility and to encourage them

to reduce their environmental and resources footprint. (Deliverable 6.5)

 Provide mechanisms to build added value service linking the platform to social

networks with the objective to boost engagement of stakeholders with the ICT

platform and more importantly raise awareness about energy consumption. Also

provide mechanisms to build added value services offering data analysis of monitored

data, through machine learning big data techniques or business intelligence

techniques. (Deliverable 6.6)

 Integrate and validate the different modules of the ICT platform. (Deliverable 6.7)

The overall objective for this task (Task 6.3) and its deliverable (D6.3) is to design and

implement the data models that will accommodate data coming from the different data

sources and demonstrators. The expected deliverable is a demonstrator that presents the

instantiation of those data models in a real platform.

2.2 Objectives of Task 6.3

The main objective for this task/deliverable is to design and implement the data models that

will accommodate data coming from the different data sources and demonstrators. Data from

the systems deployed in the lighthouse experiments must be analysed and selected. Thus

system deployment tasks in work packages 3, 4 and 5 must be closely followed. The

database model will also consider data consumer requirements; the added value services

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 14 / 57

and the HMI requirements from tasks 6.5 and 6.4 and the ICT solutions to be developed in

work packages 3, 4 and 5. The model has to be flexible to accommodate heterogeneous

data from present and future communities. The model will be conditioned by the volume,

velocity and variety of data. Depending on those conditions and the nature of the information,

the data models included might vary from a traditional relational database to a NoSQL

database, a distributed unstructured model based on Big Data or even accommodate

different models altogether.

At this moment in the project the detail for all ICT applications and systems to be

implemented/installed in work packages 3, 4 and 5 was not fully available so the efforts have

been put in demonstrating the capability of building all the data models necessary in the

project for a specific data flow. All the repositories to be built in the final solution have been

constructed although additional effort will be required in the pilot work packages to adapt

those data models to the requirements of the applications and systems to be installed. This

task has to closely work with work package 7 and as a result Key Performance Indicators

(KPI) data model representation has been produced.

A specific implementation of the data models is presented as the main result of this task. The

data models agree to the Reference Architecture specifications. That is to say, the

deliverable will provide a demonstrator or prototype that accommodates all the data models

identified in that Reference Architecture.

The main activities performed in this task are:

 Selection of data. Identify which data are offered by the systems deployed in the

demonstrators and select those required by the different stakeholders. The selection

will be based on the ICT solution requirements and the Key Performance Indicators

(KPI) to be measured in the project.

 Analysis, selection and design of the data models for the platform considering Smart

City projects data models. Depending on the data selected and its behaviour different

alternatives will be considered and selected.

 Design and Deployment of the infrastructure to accommodate the data models.

Description of the data models and demonstrator included in this deliverable

D6.3.

 Test and validation of the data models.

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 15 / 57

3 Overall Approach

In this section, the steps followed to achieve the deliverable are outlined. The methodology

and the Reference Architecture selected in (SmartEnCityD6.2, 2017) have been adopted and

extended in this deliverable. The same approach followed in (SmartEnCityD6.2, 2017) has

been used to define and later implement the data models. The approach is shown in Figure 1

and starts from analysing the requirements which consolidate in the Concept Architecture

report. This report includes the data flows necessary to build the applications to be

developed in the demonstrator. The Concept Architecture evolves into the Architecture

Design stage. The result of this stage is the Reference Architecture which includes the data

models for the solution. The results are presented as reports describing the Reference

Architecture and as demonstrators. These demonstrators are instantiations of the Reference

Architecture created as prototypes that can be easily shared and reused in the project.

In this task, two major approaches have been implemented:

1. Identify and describe the data models necessary for the SmartEnCity CIOP extending

the Reference Architecture using the methodology proposed in (SmartEnCityD6.2,

2017). Data models are described including a general description of the model, the

type of data expected, the relation to other repositories and the technologies

proposed for the implementation. The results for this part are presented in Section 4.

2. Build a demonstrator that implements those data models for a specific data flow

following the data flow construction process proposed in (SmartEnCityD7.9, 2017).

The results from this part are presented in Section 0.

Figure 1: Architecture building approach

WP 3-4-5

Architecture
Conceptualization

Concept
Architecture

Architecture
Design

Stakeholders

Current Practice

SOTA

Architecture
Development and

Deployment

Use Case n
Architecture

Reference
Architecture

Technological
architecture brief

Technological
prototypes

Requirements
Technological

framework

Architecture Demo

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 16 / 57

4 SmartEnCity CIOP Reference Architecture Data Models

4.1 Reference Architecture in SmartEnCity

In (SmartEnCityD6.2, 2017), the Reference Architecture proposed for SmartEnCity was

presented. The Reference Architecture is a layered model based on UNE 178104:2015

(AENOR CTN-178 group standard). Figure 2 presents the layers and modules composing

the reference architecture. It is worth outlining that the core of the Reference Architecture is

an IoT platform. A reference architecture implementation gathers different types of data

through the acquisition layer: Real time data (sensor data), Open Data (weather forecast),

district heating, mobility, social networks, etc. Those data are stored and treated in the

knowledge layer. The interoperability layer enables the consumption of those data through

APIs. The intelligent service layer offers services and applications for the different vertical

domains (energy, environment, mobility, etc.) that have been developed based on the Smart

City infrastructure and available data sources.

The repositories necessary to build a Smart City platform are also outlined in the Reference

Architecture. The repositories or data models necessary for its representation are generic

(highlighted in orange). It should be noticed that the data models and the technologies

provided to build high added value services are the main components that distinguish an IoT

platform from a domain specific platform as the SmartEnCity CIOP platform. That is, what

shapes a platform according to the domain (smart city) are the verticals and high added

value services.

Figure 2: Smart Cities General Architecture

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 17 / 57

This section presents a description of the data models or repositories identified for the

SmartEnCity CIOP. The data models are part of the Reference Architecture and are

necessary to represent the different verticals of Smart Cities (energy, mobility, environment

…), indicators (KPI), context information and infrastructure access and management.

The data models have been identified and defined following the methodology outlined in

section 3. A detail description of the steps taken to define the reference architecture was

presented in (SmartEnCityD6.2, 2017) (Section 4). During the workshops organised, the

following issues related to the data models were discussed:

 Decide on data common to the three lighthouses and its requirements

 Identify verticals and possible stakeholders

Data models common to all the instantiations of the Reference Architecture were identified

during those sessions (highlighted in orange above). The common repositories include the

real time repository, the historical repository, the GIS repository, the structural repository, the

configuration repository, the KPI repository and the verticals. A general description of those

data models including the type of data expected, the relation with other repositories and the

technologies more suitable to implement those data models was provided (see section 4.2).

The implementation of those models implies the selection of technologies and the adaptation

of existing data by means of data management (aggregation, extraction …). The data models

implemented should be common but the level of completeness might vary from one

lighthouse to the other. That is, some demonstrators might not implement certain repository

or could only provide part of the data that the model is able to accommodate while others

could implement the whole data structure.

The most important data repositories are KPIs and verticals. KPIs are valid to determine the

behaviour of systems and measures. They are relevant enough to constitute an additional

data model. KPIs are the main topic in work package 7. Thus, there has been closed

collaboration with that work package in order to represent the KPI data model accordingly to

the requirements and constraints identified there.

Another important issue addressed was the verticals or domains to be implemented in the

project. In this stage of the project and from the contacts with the stakeholders the following

verticals have been identified:

 Energy assessment

 Mobility

 Environment

 Social Acceptance

At this moment in the project the detail for all ICT applications and systems to be

implemented/installed in the verticals of work packages 3, 4 and 5 is not fully available so the

efforts have been put in demonstrate the capability of describing all the data models

necessary for the Reference Architecture (this section) and building those data models for an

specific data flow as a demonstrator (see Section 0).

Stakeholders interested in those verticals have been also addressed. The following

stakeholders have been identified: resident, municipality, WP7 (KPIs) and Energy Service

Companies (ESCO). Further work on the profiles and the needs required by each

stakeholder is necessary in WP3, 4 and 5.

The following subsections present the data model description.

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 18 / 57

4.2 Data Models

While the IoT platform implements the functionality of the different parts of a Smart City

project, the logic is represented/supported in the data models. The platform developed in

Task 6.2 and presented as a demonstrator, is the base from which the demonstrator

presented in Task 6.3 is developed. That is, Task 6.3 adds SmartEnCity data models to the

demonstrator presented in D6.2.

Data models necessary to represent the Smart City domain, the different verticals of Smart

Cities, common parts (such as indicators or KPIs), location and infrastructure are described

in this section. Figure 3 presents the repositories identified for the Reference Architecture in

SmartEnCity. Each repository is described in the following chapters including

Figure 3: Data Models for CIOP

4.2.1 Vertical Data Repository

Description: Vertical data models are closely related to the different applications and data

that will be used in the lighthouses. Therefore, the implementation of this repository depends

on each lighthouse and the application to be developed in those. Nevertheless, the work

explained in section 5.2.1 (Vertical Data Repository (Energy)) is an example of the type of

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 19 / 57

data model expected for this repository. The vertical for this demonstrator is focused in the

electricity measurements collected at household level to monitor and present energy

consumption data.

Type of Data: Vertical repositories might vary depending on the nature of data (volume,

frequency…).

Relation to other Repositories: The relation with other repositories needs also to be

addressed. Thus, we clearly detect the need to integrate this data models with the Structural

Data Repository and the Real Time Repository. The Structural repository will provide

information about location and context while the Real Time Repo will provide information

collected in the city by sensor and systems. There will be relations with the Historical Data

Repository since historical data from the verticals will be stored.

Technologies: Might vary depending on data nature. For the demonstrator since no Big

Data conditions are expected in this repository, a relational database model has been

designed. The measurements in this repository will consist of aggregated data from each

sensor extracted from the Real Time repository.

4.2.2 KPI Repository

Description: The data model for the Key Performance Indicators (KPIs) stores the

calculated/aggregated indicators. These indicators have been selected in WP7 and are

calculated computing the values of different verticals and Real Time repositories. This

repository will be common for all lighthouses in the project.

Type of Data: Aggregated data with low frequency of collection and reduce volume is

expected. The number of indicators is not large either (around 50 indicators per lighthouse).

Relation to other Repositories: KPI Data Repository will have relations with the Real Time

Repository and in some cases with the Vertical Data Repositories. It will also be related to

the Structural Data Repository. For example, a KPI could be related to a district and could

have aggregated data extracted from the electrical vertical and electrical real time repository.

Technologies: Since aggregated data is stored and not a real time data with high frequency

and volume is expected a Relational Database technology has been identified as the best

option for KPI repository.

In section 5.2.1, the design proposal for the demonstrator is presented.

4.2.3 Historical Data Repository

Description: The objective of the historical data repository is to store the historical data

collected in the platform. Historical data is gathered from other repositories and stored

permanently in a common space where historical data can be recovered in case it is

necessary (data analysis, disaster recovery …). The swift of container is performed in order

to free up space in the main repositories (verticals, real time, KPIs …).

Type of Data: The most common option is to store information in files. Files can be saved in

their original data format or after performing some kind of transformation in plain text format,

csv or similar (for example DB scripts). Storing information in files eases the reutilization of

information with different technologies in the future.

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 20 / 57

Relation to other Repositories: There will be relations with the others Data Repositories in

the knowledge layer since historical data from these repositories will be stored.

Technologies: To store the historical data, a scalable, flexible and fast technology is

required. To meet these requirements Hadoop File System (HDFS) has been selected as the

best option. In addition to these characteristics, Hadoop deploys a failure resilient distributed

system that assures availability and consistency. When data is sent to an individual node,

that data is also replicated to other nodes in the cluster, which means that in the event of a

node failure, there is another copy available for use in another site. HDFS starts replicating

the data to another existing node as soon as it detects new content. Scalability is also

considered in Hadoop where new nodes can be added to address an increase in the storage

requirements or in avoiding node failure.

4.2.4 Structural Data Repository

Description: The objective of the structural data repository is to store the structural data

collected in the platform and the relations among them. This repository stores information

from countries in the system to households. This information is then used to store data

related to the structural elements (such as consumption per household, KPIs per district…)

Type of Data: The most common option is to store information in relational databases. This

way, relations among the different elements in the repository are stored.

Relation to other Repositories: There will be relations with the others Data Repositories in

the knowledge layer, such as verticals or KPIs. In the energy vertical repository, for example,

each energy measurement in a household is stored. Therefore, a relation between that

repository and the structural one is needed. KPI repository also stores specific KPIs grouped

by different structural elements, so a relation is needed.

Technologies: Structural elements are closely related among them, and that relation is

important to be stored. Therefore, relational data bases have been selected to store this kind

of information.

4.2.5 GIS Structural Data Repository

Description: The data model for the Structural Data Repository stores the urban data model

which sets the basis for the structural information of the city. The structural data repository is

based on the standard CityGML, which is an open standardised data model and exchange

format to store digital 3D models of cities and landscapes. It defines ways to describe most

of the common 3D features and objects found in cities (such as buildings, roads, rivers,

bridges, vegetation and city furniture) and the relationships between them. It also defines

different standard levels of detail (LODs) for the 3D objects, which allows us to represent

objects for different applications and purposes.2

Type of Data: The structural data repository will include geometry of the main city objects, as

well as semantic properties of the different kinds of the 3D city object.

Relation to other Repositories: Structural Data Repository will provide to the GIS

Repository with the most updated information about the structural data (geometry and static

attributes) of the study area of the city. This repository will be used for the 3D visualization of

2
 CityGML homepage https://www.citygml.org/

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 21 / 57

the city and it requires access to other repositories in order to access information to be

shown in the 3D model.

Technologies: A relational database will be used to store the information of the structural

data repository. 3DCityDB will be used to efficiently store and quickly process information of

the CityGML model. An implementation of the 3DCityDB in PostGIS will be used. WFS (Web

Feature Services) will be used for accessing the information stored into the repository.

In section 0, the design proposal for the demonstrator is presented.

4.2.6 GIS Repository

Description: In this repository it will be kept the information to describe geographically the

city area, so it will store the 2D geometry of the common city elements as well as the

alphanumerical info associated to them.

GIS Repository is divided in four categories corresponding to: urban structures, street

furniture, parks and gardens and urban mobility that are described in the next section along

with the detailed description of the data for each field.

Type of data: This repository will contain the 2D geometry of the different city elements as

well as the alphanumerical attributes related to each layer to complete the information.

Relation to other Repositories: This repository is closely related to the structural repository

mentioned above and will take the data stored in it to complete the information.

Technologies: To store the model information it will be used a spatial database deployed in

SQL Server. This information will be served through Geoserver using GIS OGC standard

services like WCS, WFS, WMS. Geoserver will be deployed over a web application server.

4.2.7 Configuration Repository

Description: The Configuration Repository is the database of the needed information to

manage the different users, profiles and security permissions. The Configuration Repository

acts in a transversal way to the rest of the layers and components of the platform by offering

services of users’ management, security, access monitoring and others.

Type of Data: It consists in a structured database where the following data is stored: users’

identification with passwords, permissions and allowed access; security rules and conditions;

and the structure of the platform, layers and components.

Relation to other Repositories: As the Configuration Repository is a transversal layer it has

relation with most of the repositories of the rest of the layers. The users´ management,

access control and security are relative to all the databases and repositories of the rest of

data.

Technologies: To access to the Configuration Repository a Web interface will be developed

where the management of uses’ access will be don bet REST services in each of the

repositories. Each repository will have its own database of users and permissions.

4.2.8 Real Time Repository

Description: The Real Time Repository contains data received from the different sensors

and external systems that act as external information sources for the different components of

the platform.

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 22 / 57

Type of Data: The data in this repository is not structured, as the data sources can be so

heterogeneous that it cannot be structured in a meaningful and useful way. Most of the time,

this data will be time dependent (e.g., measurements from sensors, made at regular time

intervals), and the processing of that data will also consider time intervals as the main

selection and processing criteria (e.g, average energy consumption over 1 day, 1 week, etc.).

It means the repository will be mainly dealing with so called “Time Series Data”. Also, the

potential volume of data received and stored in this repository is very high (there can be

thousands of different sensors, each sending several data points at potentially small time

intervals).

Relation to other Repositories: As the Real Time Repository is the main external data input

to the platform, especially data from external monitored or controlled systems, it has

relationships with the repositories holding data about such external systems, such as the

Historical Data repository, the KPI repository and the Vertical Data repositories.

Technologies: As explained in the “Type of Data” paragraph, the data stored in this

repository will mainly consist of time series data, and the volume of such data will potentially

by very high. A perfect fit for these two requirements is the usage of so-called Time Series

Databases, or TSDBs. There are many TSDBs to choose from, both commercial and open-

source. Also several traditional SQL and non-traditional noSQL database solutions can be

extended or configured to be used as a TSDB.

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 23 / 57

5 SmartEnCity Demonstrator (Data Model)

This chapter presents the demonstrator developed for SmartEnCity in Task 6.3. First the

process followed to design and develop the prototype is outlined. Secondly the actual

demonstrator is presented.

5.1 Demonstrator design and development

The different applications and solutions to be provided in SmartEnCity are data centered.

Thus, we will consider different flows of data depending on the process data will follow for a

specific application or solution. A data flow is the process data follows from the moment it

enters the platform until it is consumed by an application. The stages data passes in this

process includes data uploading/collecting, transformation, storing, analysis, recovering and

data downloading or consumption (visualization). See (SmartEnCityD7.9, 2017) for more

detail on those stages.

Each application may depend on different data sources, may apply different processing

algorithms or models for analysis and may be presented in a different manner. The storage

of that data might be different as well. Some data will be stored locally in structured

databases; other might come from other repositories (structure or no) or even from external

sources (open data). Consequently, each application will build the data flows depending on

those characteristics.

In order to have a common framework to design, construct, validate and commission the

data flows, (SmartEnCityD7.9, 2017) proposes a framework based in (Ralph Kimball, 1998)

data processing lifecycle. The framework is shown in Figure 4. The detail explanation of each

stage is presented in (SmartEnCityD7.9, 2017). All data flows to be developed in

SmartEnCity will follow this framework for construction.

The work conducted in this demonstrator has involved most of the stages in the framework

but it has concentrated specially in the Data Modelling stage since the demonstrator focuses

on building data models for SmartEnCity.

D6.3 – Data Model Architecture Implementation

SmartEnCity - GA No. 691883 24 / 57

Figure 4 Data Process lifecycle

Project Planning
Business

Requirements
Definition

Technical
Architecture

Design

Product Selection,
Installation,

Configuration

Data Modelling
ETL Design and
Development

Data Gathering
Application
Design and

Development

Data Delivery
Application
Design and

Development

Validation Deployment

Maintenance

Project Management

Decommissioning

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 25 / 57

Data models are the real representation of a domain. It should be noted that data models

necessary to represent the Smart City domain have been constructed with the requirements

available at this stage. Demonstrator work packages (WP 3, 4 and 5) could use these data

models to implement the solutions to be developed in their lighthouses. Different

implementations for the data models are also valid. They have to agree with the Reference

Architecture definitions given in Section 4. Data model implementations for each LH are

highly dependent on technologies implemented and also on use cases. In case where off the

shelf IoT platform is used, platform itself might dictate how data is collected, transformed and

stored. In this case, additional processing services might be needed to provide data for KPIs

or verticals. In addition to data models, IoT platform might have integrated asset and device

management, GIS services etc.

5.2 Demonstrator Description

For a demonstration of results, we have created a basic CIOP that presents all the data

models necessary for SmartEnCity. The demonstrator is a fully functional IoT platform that

has all the generic layers and functionalities and data models, but only manages content for

a specific data flow. Figure 5 presents the architecture of the solution with the repositories

available. The idea behind the demonstrator is to collect data from sensors (energy

monitoring system), store them in the CIOP platform, transform them to calculate KPIs and

present those data in a context where data is associated to the city using GIS visualization

solutions.

The data flow considered for the demonstrator is presented in section 5.2.1.The data models

are detailed in section 5.2.2. A user guide where the reader can obtain information to access

the demonstrator is available in section 5.2.3. Finally, a summary of the technologies, tools

and mechanisms used in the demonstrator is presented in section 5.2.4.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 26 / 57

Figure 5: Architecture of the demonstrator.

5.2.1 Demonstrator data flow

As mentioned throughout this document, the different solutions to be developed in

SmartEnCity will be constructed based in data flows. A data flow is the process data follows

from the moment it enters the platform until it is consumed by an application. For the

demonstrator and as an example, we have constructed a data flow that involves all the data

models necessary for SmartEnCity. The main idea is to build a data flow that also goes

through all the stages in the data process (see section 4 in (SmartEnCityD7.9, 2017)). Thus,

data will be collected from sensors at the acquisition level and stored in the real time

repository. The row data of the real time repository is extracted, summarized and stored in

the vertical repository every hour. Moreover, once a week, a backup of the real time

repository is also saved in the historical repository. Finally, every week, data from vertical

repository is aggregated and stored in the KPI repository and GIS repository for its further

visualization. All this flow is managed by different interoperability mechanisms explained in

SmartEnCityD6.3, 2017. A visualization of the data flow is also visually represented in Figure

6 (blue arrows).

Figure 6 also shows which repositories are related among them. Vertical repository and KPI

repository are related to Structural Data Repository. Using these relations, for example, we

can know the measurements related to a household or the KPI value for a specific building.

Finally, some structural elements are related to the GIS repository so they can be visualized.

That way, KPIs are finally visualized using a web application that presents data in a context

(City graphical interface). See section 5.2.3 for more detail on the visualization add provided.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 27 / 57

Figure 6: Related data models and data flow.

5.2.2 Data Models for demonstrator

This section presents the SmartEnCity data models used for the demonstrator. Data models

necessary to represent the Smart City domain, the different verticals of Smart Cities,

common parts (such as indicators or KPIs) and infrastructure are described next.

Vertical Data Repository (Energy)

The repository gathers the aggregated data of the measurements of sensors in the

households. Therefore, it must be related to Real Time repository (sensor measurements)

and Structural Repository (households, buildings, districts…).

Below, all tables of the data model are described, along with their columns and Data Types.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 28 / 57

Figure 7: Vertical Data Model for the Demonstrator.

DeviceSetup

This table will store each configuration for each sensor in the system (the configuration for

each channel of the gateway).

● DeviceSetupID INT: Device Setup auto numeric identifier.

● SetupDate DATETIME: Stores the date when the configuration has been created

(usually, when the gateway has been installed).

● MeasurementTypeID INT: The reference to the type of measurement we will receive,

such as consumption, humidity or temperature (foreign key).

● UnitID: the reference to the unit of the measurements we will be receiving (foreign

key).

● ConstantConventionValue FLOAT: Constant to transform Device’s energy

measurements to a unified unit (Wh for example).

● LocationID INT: Reference to household room types (bedroom, living room,

kitchen…).

● GatewayID INT: Reference to the Gateway that will send the measurements of the

device.

● ChannelNumber INT: The Gateway’s channel from where the data will be receiving.

Unit

This table will store the different units that will be used in the system (for measurements,

KPIs…).

● UnitID INT: Unit’s auto numeric identifier.

● Name VARCHAR(45): name of the unit for human readability (“Watt”, “Degree

Celsius”, “Watt hour”...).

● Symbol VARCHAR(45): symbol of the unit (e.g. W, ºC, Wh…).

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 29 / 57

MeasureType

This table contains the three main energy measurement types managed in the project

(Electrical, Thermal, Comfort [humidity]).

● MeasureTypeID INT: Measurement Type’s auto numeric identifier

● Name VARCHAR: descriptive name of the measurement type (e.g. Electrical,

Thermal, Comfort).

Measurement

This table will store each measurement from each device in the system. The measurement is

usually send in a certain period of time.

● MeasurementID INT: Measurement auto numeric identifier.

● Value FLOAT: the value of the measurement (the unit of the measurement is stored

in the devicesetup, we don’t receive the unit from the gateway).

● EstimatedCost FLOAT: estimated cost of the measurement (if it is a consumption

measurement).

● StartDate DATETIME: start date of the specific measurement.

● EndDate DATETIME: end date of the specific measurement.

● StartDateTimestamp TIMESTAMP: Calculated Unix Timestamp.

● EndDateTimestamp TIMESTAMP: Calculated Unix Timestamp.

● DeviceSetupID INT: the reference to the device setup id

Gateway

The gateway is the element that gathers the measurements of the devices of a household

and sends them through different channels.

● GatewayID INT: Gateway’s auto numeric identifier.

● SerialNumber VARCHAR: The serial number of the gateway given by the

manufacturer.

● ActivationCode VARCHAR: calculated using serial number for device discovery

(used only once).

● ApiKey VARCHAR: The API Key generated by the system that enables data

gathering.

● FeedID INT[12]: the final id that will be used for communication purposes, given by

the system to the gateway.

● Comments VARCHAR: Field to save other things as installer's name.

● HouseholdID INT: The reference to the household where the gateway is installed.

● GatewayModelID INT: The reference to the model of the gateway.

Gateway Model

This table stores the information about the different Gateway models.

● GatewayModelID INT: Gateway model’s auto numeric identifier.

● Brand NVARCHAR: Brand of the gateway model.

● Model NVARCHAR: The reference or name that has given the brand’s model of the

gateway.

● FrequencyInSeconds INT: How often the gateway sends the data (in seconds).

Location

Location of the sensor in the household (e.g. kitchen, bedroom, living room…).

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 30 / 57

● LocationID INT: Location’s auto numeric identifier.
● Name VARCHAR(45): Human readable name for the location.

KPI Repository

Figure 8 shows the design of the relational database for the KPI data model. It is inspired in

the KPIs defined in D7.2 in order to be able to store the indicators from all the verticals in the

same repository.

Below, all tables of the data model are described, along with their columns and Data Types.

Figure 8: The KPI data model for the desmostrator.

Kpi

This table stores the general information for each KPI.

● KpiID INT: KPI’s auto numeric identifier inside the system.

● Cod INT: Identifier of the KPI (outside the system, in a human readable form).

● Name NVARCHAR: Descriptive human readable name of the KPI.

● FrequencyInDays INT: How often the KPI is calculated (in days).

● UnitID INT: Reference to the unit of the measurements of the KPI (e.g. KWh/m²).

● StructuralElement NVARCHAR: The structural element that the KPI is calculated for

(Building, District…)

ClassKpi

This table stores the relation among classes and KPIs. A class can have more than one KPI,

this is a table created because of that N to N relation.

● KpiID INT: Reference to the Kpi.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 31 / 57

● Class INT: Reference to the class.

Class

This table stores a first level classifications for the KPIs.

● ClassID INT: Class’s auto numeric identifier.

● Title NVARCHAR: Descriptive title of the Kpi class.

● ClassTypeID INT: Reference to the Kpi class type.

ClassType

This table stores the second level classifications for the KPIs.

● ClassTypeID INT: Class’s type auto numeric identifier.

● Name NVARCHAR: Descriptive name of the KPI class type.

ReportKpi

This table stores the relationships among reports and KPIs. A report can have more than one

KPI, this is a table created because of that N to N relation.

● ReportID INT: Reference to the report.

● KpiID INT: Reference to the KPI.

Report

The report is a set of different KPIs to be shown.

● ReportID INT: Report’ auto numeric identifier.

● Title NVARCHAR: Report’s title.

● SubTitle NVARCHAR: Report’s subtitle.

Unit

This table will store the different units for the Measures that will be used in the KPIs.

● UnitID INT: Unit’s auto numeric identifier.

● Name VARCHAR(45): name of the unit for human readability (“Watt”, “Degree

Celsius”, “Watt hour”...).

● Symbol VARCHAR(45): symbol of the unit (e.g. W, ºC, Wh…).

Measure

This table contains main KPI data. It is loaded with aggregated data from the different

verticals.

● MeasureID INT: Measure’s auto numeric identifier.

● KpiID INT: Reference to the KPI related to the measure.

● StartDate DATETIME: What date have we started calculating the measure from?

● EndDate DATETIME: Until what date have we calculated the measure?

● Value DECIMAL(9,2): The results of the aggregated data calculated from the

StartDate to the EndDate, or the specific value of the KPI in that period of time.

● ReferenceValue DECIMAL(9,2): The estimated value this measure should have,

according to some simulations (baseline value).

● CountryID INT: Reference to the country where the measure has been taken.

● StructuralID INT: The identification of the specific structural element the measure is

related with (a specific building ID, or District ID…).

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 32 / 57

Historical Data Repository

Hadoop has been selected as the technological solution for the demonstrator. To store the

historical data of the project and aiming at maintaining a logical structure in Hadoop, the

following folder structure is proposed for this repository:

1. Data repo level: Different folders per each main data repository (verticals, GIS, KPIs

…).

2. Time slots level (written using ISO 8601): Different time slots. In each data repository

the best time slots will be defined depending on the characteristics of the

technologies used, the data behaviour and the repositories. In some cases more than

one time slots level will be created. For example, when the data is stored frequently in

this repository.

3. Data level: Files are stored here as described in section 4.2.3 (files in original data

format or files in plain text format or similar (store after transformation to make easier

the use of information with different technologies in the future).

Example: Figure 9 presents the proposed structure considering an example (a relational

database for the KPIs repository).

Figure 9: Example of historical repository structure

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 33 / 57

Structural Data Repository

Figure 10: Structural data model for the demonstrator

Country

This table stores the countries that are in the system.

● CountryID INT: Country’s auto numeric identifier inside the system.

● Name NVARCHAR: Descriptive human readable name of the Country.

● Code NVARCHAR: country code (e.g. es for Spain).

City

This table stores the cities that are in the system.

● CityID INT: City’s auto numeric identifier inside the system.

● Name NVARCHAR: Descriptive human readable name of the City.

● CountryID INT: Reference to the country the city belongs to.

District

Districts are differentiated zones inside a city. This table stores the districts that are in the

system.

● DistrictID INT: District’s auto numeric identifier inside the system.

● Name NVARCHAR: Descriptive human readable name of the District.

● PostalCode NVARCHAR: a series of characters included in a postal address for the

purpose of sorting mail.

● CityID INT: Reference to the city the district belongs to.

● GisID NVARCHAR: the identifier the district has in the GIS repository for

interoperability purposes.

●

Building

This table stores the buildings that are in the system.

● BuildingID INT: Building’s auto numeric identifier inside the system.

● Street NVARCHAR: Descriptive human readable name of the street where the

building is placed.

● Number NVARCHAR: The number in the street (regarding to the address) where the

building is placed.

● DistrictID INT: Reference to the district the buildings belongs to.

● GisID NVARCHAR: the identifier the building has in the GIS repository for

interoperability purposes.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 34 / 57

Household

The household are the specific homes that are inside a building. This table stores the

households that are in the system.

● HouseholdID INT: Household’s auto numeric identifier inside the system.

● Address VARCHAR: full address of the household.

● ResidentsNumber INT: amount of residents living in the household.

● SquareMeters INT: size of the household in m².

● ConsumptionTarget FLOAT: the amount of energy consumption the household is

suposed to consume.

● SelectedCostPerKw FLOAT: Cost/KW of the household, established by the user.

● Exposure VARCHAR: The orientation/facing/exposure of the household (N for north,

E for East, S for South, W for West, NW for Northwest, ESW for East-South-West,

etc.).

GIS Structural Data Repository

Structural Data Repository in SmartEnCity will be based on the CityGML standard data

model. This section describes the main elements of this data model that will be used in the

project.

CityGML identifies several modules for the definition of the main city elements. Following

figure (Figure 11) represents the modules defined in CityGML. The most representative

modules for urban areas are rounded.

Figure 11 CityGML Modules

Building is the main element of a City Model, a city is mainly composed of buildings.

Transportation module represents urban elements such as, roads, parking areas and rail

networks. Vegetation module represents green spaces, from solitary trees to gardens and

forest areas. WaterBody module is used to represent rivers, lakes or ponds. Other elements

located in the city such as bus stop, railway station or traffic lights are represented as

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 35 / 57

CityFurniture. Different elements from the previous modules can be grouped into a

CityObjectGroup in order to represent an area, district or city.

Building

The main element of the city model is the building. A simplified version of the UML diagram

of the building model in CityGML is presented in the following figure (Figure 12). Building

model in CityGML includes building parts and elements such as rooms, installations or

furniture. However for the level of definition required in the project those elements will not be

represented in the city model. Bellow the main data which represents the building are listed

and detailed.

Figure 12 Simplified version of UML diagram of building model in CityGML.

Property name Type Description

Name String Name of the Building, inherited from
CityObject

Description String Description of the Building, inherited from
CityObject

Class gml:CodeType Class of the building (e.g. School, Church,
Business or Industry)

Function gml:CodeType Function of the building (e.g. Residential,
Hotel, Public building or Museum)

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 36 / 57

Usage gml:CodeType Current use of the building, it could be
different from the purpose for which it was
built

YearOfConstruction Year Year in which the building was constructed

YearOfDemolition Year Year in which the building was demolished,
if applicable.

RoofType gml:CodeType Type of the roof of the building (e.g. Flat,
Gabled or Hipped)

MeassuredHeight Numeric Size of the building from the lowest element
to the highest element.

StoreysAboveGround Numeric Number of storeys above the ground level

StoreysBelowGround Numeric Number of storeys under the ground level

StoreyHeightsAboveGround Numeric List of storey heights above the ground
level (from nearest to farthest to ground
floor)

StoreyHeightsBelowGround Numeric List of storey heights below the ground level
(from nearest to farthest to ground floor)

Other information stored related to the buildings is the address of the building, including

Country, City, Postal code and street name and number.

Geometry of the building is represented by the footprint in 2D for Level of Detail 0 (LoD0) or

a georeferenced 3D geometric representation of the building envelope for higher levels (from

LoD1 to LoD4). It can be represented by a Solid or a Multisurface.

Transportation

Transportation in CityGML represents roads, tracks, rails, and squares. Main data

representing a transportation object in CityGML are described in the following table:

Property name Type Description

Name String Name of the Transportation object,
inherited from CityObject

Description String Description of the Transportation object,
inherited from CityObject

Class gml:CodeType Class of the transportation object

Function gml:CodeType Function of the Transportation object

Usage gml:CodeType Current use of the Transportation object

The geometry of the transportation objects are represented by 2D lines in (LoD0)

establishing a linear network. For higher levels of details an explicit surface geometry is used

represented by a Multisurface.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 37 / 57

Vegetation

Main data representing a vegetation area in CityGML are described in the following table:

Property name Type Description

Name String Name of the vegetation area, inherited from
CityObject

Description String Description of the vegetation area, inherited
from CityObject

Class gml:CodeType Plant community of the vegetation area

Function gml:CodeType Intended purpose of the vegetation area

Usage gml:CodeType Real purpose of the vegetation area

AverageHeight Numeric Average relative vegetation height

The geometry of the vegetation areas are represented by Multisolid or Multisurface

geometries for LoD1 to LoD4. LoD0 is not defined for vegetation objects.

WaterBody

WaterBody in CityGML represents rivers, canals, lakes, and basins. Main data representing

a water body in CityGML are described in the following table:

Property name Type Description

Name String Name of the waterbody element, inherited
from CityObject

Description String Description of the waterbody object,
inherited from CityObject

Class gml:CodeType Classification of the object, e.g. lake, river,
or fountain

Function gml:CodeType Purpose of the waterbody object like, for
example national waterway or public
swimming

Usage gml:CodeType Current use of the waterbody object

The geometry of the waterbody objects is represented by 2D surfaces (MultiCurve or

MultiSurface). From LoD1 to higher levels water bodies may also be modelled as water filled

volumes represented by Solids.

CityFurniture

City furniture objects are immovable objects like lanterns, traffic lights, traffic signs, flower

buckets, advertising columns, benches, delimitation stakes, or bus stops. Main data

representing a cityfurniture object in CityGML are described in the following table:

Property name Type Description

Name String Name of the object, inherited from
CityObject

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 38 / 57

Description String Description of the object, inherited from
CityObject

Class gml:CodeType Classification of the object like traffic light,
traffic sign, delimitation stake, or garbage
can,

Function gml:CodeType Determines to which thematic area the city
furniture object belongs

Usage gml:CodeType Real purpose of the object

City furniture objects can be represented in city models with their specific geometry.

Building

The building model is described in the table shown in Figure 13. The three CityGML classes

AbstractBuilding, Building and BuildingPart are merged into the single table Building. The

hierarchy within a building is realized by the foreign key building_parent_id, it refers to the

superordinate building and contains null if it does not exist. This allows creating a tree

structure within a building. In the same way, the building_root_id indicates the top level of a

building, the root.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 39 / 57

Figure 13: Building database schema

As can be seen in Figure 14 for the building with id 804, multiple building parts are defined

(818, 834, 852, 805). Each building part has semantic information such as year of

construction, measured height or storeys above ground defined. In addition, the foreign key

to the lod2 geometry is also represented (3322, 3368, 3420, 3285).

The meaning and the name of most fields are identical the attributes described in the

CityGML standard UML diagrams. For every attribute including measure information such as

measuredHeight or storeyHeightsAboveGround, another column is provided indicating the

unit of the measurement.

In order to represent the geometry, several foreign keys are defined named

lodx_multi_sruface_id (1 ≤ x ≤ 4), and lodx_solid_id (1 ≤ x ≤ 4) which refer to entries in the

surface_geometry table and represent each LoD’s surface geometry.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 40 / 57

Figure 14: Building example in database

Thematic surface

The table thematic_surface represents thematic boundary features in CityGML. Each

boundary surface in CityGML has a number of subclasses that represent different types of

surfaces. In order to represent the type of surface the column objectclass_id is used in the

table thematic_surface. Allowed integer values:

Boundary type integer Boundary type description

30 CeilingSurface

31 InteriorWallSurface

32 FloorSurface

33 RoofSurface

34 WallSurface

35 GroundSurface

36 ClosureSurface

60 OuterCeilingSurface

61 OurterFloorSurface

The relation between buildings and the corresponding boundary surfaces results from the

foreign key building_id within thematic_surface table, which refers to the ID of the respective

building.

As can be seen in the Figure 15, the boundary surfaces of the building 818 are the following

ones. Most of them are WallSurfaces and one of them is a RoofSurface. Each of the

thematic surface is connected with the surface geometry table using the

lod2_multi_surface_id.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 41 / 57

Figure 15: Thematic surface example in database

Surface geometry

The surface_geometry, which for example geometrically defines a roof, should at the same

time be a part of the volume geometry of the parent feature the roof belongs to.

As can be seen in the Figure 16 the surface geometry of the ids (3338, 3340, 3342, 3344,

3346 and 3348) is presented. The geometry columns stores the coordinates of each polygon.

Figure 16: Surface geometry example in database

GIS Repository

This repository is divided in four categories (see Figure 17) corresponding to: urban

structures, street furniture, parks and gardens, urban mobility:

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 42 / 57

URBAN STRUCTURES

PARKS AND GARDENS

STREET FURNITURE

URBAN MOBILITY

BUILDINGS_AND_STRUCTURES

PK id_bld_str INTEGER

 layer VARCHAR(50)
 description VARCHAR(100)
 geom: LINE BINARY(100)

URBAN_AREA_STRUCTURE

PK id_urban_area INTEGER

 layer VARCHAR(50)
 description VARCHAR(100)
 geom: LINE BINARY(100)

TREE

PK id_tree INTEGER

 species VARCHAR(50)
 height DECIMAL(10;2)
 street VARCHAR(50)
 type VARCHAR(50)
 leaf VARCHAR(50)
 geom: POINT BINARY(50)

LAWN

PK id_lawn INTEGER

 street VARCHAR(50)
 surface DECIMAL(10;2)
 geom: POLYGON BINARY(100)

WASTE_BIN

PK id_waste_bin INTEGER

 street VARCHAR(50)
 geom: POINT BINARY(50)

WATER_SUPPLY

PK id_water INTEGER

 street VARCHAR(50)
 geom: POINT BINARY(50)

STREET_MAP

PK id_street_map INTEGER

 street VARCHAR(50)
 geom: LINE BINARY(100)

PARCEL

PK id_parcel INTEGER

 gate_number VARCHAR(10)
 street VARCHAR(50)
 district VARCHAR(50)
 usage VARCHAR(50)
 num_dwellings INTEGER
 height DECIMAL(10;2)
 geom: POLYGON BINARY(100)

LIGHT_CONTROL_CENTER

PK id_control_center INTEGER

 street VARCHAR(50)
 geom: POINT BINARY(50)

LIGHT_SUPPORT

PK id_support INTEGER

 type VARCHAR(50)
 height DECIMAL(10;2)
 num_lights INTEGER
 geom: POINT BINARY(50)

BENCH

PK id_bench INTEGER

 street VARCHAR(50)
 geom: POINT BINARY(50)

BICY_PARKING

PK id_bicy_parking INTEGER

 capacity INTEGER
 street VARCHAR(50)
 geom: POINT BINARY(50)

PLAYGROUND_AREA

PK id_playground_area INTEGER

 street VARCHAR(50)
 cushion_area DECIMAL(10;2)
 geom: POLYGON BINARY(100)

CHILD_GAME

PK id_child_game INTEGER

 description VARCHAR(100)
 type_game VARCHAR(50)
 age INTEGER
 geom: POINT BINARY(50)

CICLE_PATH

PK id_cicle_path INTEGER

 street VARCHAR(50)
 place VARCHAR(50)
 separator VARCHAR(50)
 vertical_sign VARCHAR(10)
 geom: LINE BINARY(100)

SPORT_AREA

PK id_sport_area INTEGER

 street VARCHAR(50)
 type VARCHAR(50)
 description VARCHAR(100)
 geom: POLYGON BINARY(100)

PAVEMENT

PK id_pavement INTEGER

 street VARCHAR(50)
 type VARCHAR(50)
 area DECIMAL(10;2)
 geom: POLYGON BINARY(100)

TRAFFIC

PK id_trafic INTEGER

 layer VARCHAR(50)
 description VARCHAR(100)
 geom: LINE BINARY(100)

DISTRICT

PK id_district INTEGER

 name VARCHAR(50)
 geom: POLYGON BINARY(100)

Figure 17 Structure of GIS Repository

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 43 / 57

Urban Structures

BUILDINGS_AND_STRUCTURES (LINE LAYER)

This layer will store the information about the buildings elements such as: roofs, dividing

walls, inner courtyards…

 id_bld_str (INT): buildings and structures numeric identifier.

 layer (VARCHAR): identifier of the official 1:500 scale cartography of the Vitoria-

Gasteiz City Council containing these elements.

 description (VARCHAR): Description of the elements contained.

 geom (BINARY): layer’s geometry.

URBAN_AREA_STRUCTURE (LINE LAYER)

This layer will store the information about the elements defining urban areas such as: curbs,

sidewalks, access ramps…

 id_urban_area (INT): urban area structure numeric identifier.

 layer (VARCHAR): identifier of the official 1:500 scale cartography of the Vitoria-

Gasteiz City Council containing these elements.

 description (VARCHAR): Description of the elements contained.

 geom (BINARY): layer’s geometry.

STREET_MAP (LINE LAYER)

This table will store the street edges with the corresponding street names.

 id_street_map (INT): street map numeric identifier.

 street (VARCHAR): name of the street.

 geom (BINARY): layer’s geometry.

PARCEL (POLYGON LAYER)

In this layer it is saved the significant information about the cadastral parcels in the

Coronación district.

 id_parcel (INT): parcel numeric identifier.

 gate_number (VARCHAR): Number to identify each portal.

 district (VARCHAR): district name.

 usage (VARCHAR): type of usage of the building.

 num_dwellings (INT): Number of dwellings in the parcel.

 height (DECIMAL): Parcel height.

 geom (BINARY): layer’s geometry.

PAVEMENT (POLYGON LAYER)

In this table it is saved the different types of sidewalks pavement.

 id_pavement (INT): pavement’s numeric identifier.

 street (VARCHAR): name of the street where the pavement is located.

 area (DECIMAL): extent (in m2) of the element.

 geom (BINARY): layer’s geometry.

DISTRICT (POLYGON LAYER)

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 44 / 57

It will contain the district delimitation.

 id_district (INT): district’s numeric identifier.

 name (VARCHAR): district name.

 geom (BINARY): layer’s geometry.

Street furniture

BICY_PARKING (POINT LAYER)

This table will contain the location of the bicycle parking lots in the study area.

 id_bicy_parking (INT): bicycle parking numeric identifier.

 capacity (INT): Number of places.

 street (VARCHAR): name of the street where the bicycle parking is located.

 geom (BINARY): layer’s geometry.

LIGHT_SUPPORT (POINT LAYER)

This table will contain the location of the light supports in the study area.

 id_support (INT): light support numeric identifier.

 type (VARCHAR): Type of the support.

 height (DECIMAL): light support height.

 num_lights (INT): number of lights on the support.

 geom (BINARY): layer’s geometry.

LIGHT_CONTROL_CENTER (POINT LAYER)

This table will contain the location of the light control centers in the study area.

 id_bench (INT): bench numeric identifier.

 street (VARCHAR): name of the street where the light control center is located.

 geom (BINARY): layer’s geometry.

WATER_SUPPLY (POINT LAYER)

This table will contain the location of the water supplies in the study area.

 id_water (INT): water supply numeric identifier.

 street (VARCHAR): name of the street where the water supply is located.

 geom (BINARY): layer’s geometry.

BENCH (POINT LAYER)

This table will contain the location of the benches in the study area.

 id_bench (INT): bench numeric identifier.

 street (VARCHAR): name of the street where the bench is located.

 geom (BINARY): layer’s geometry.

WASTE_BIN (POINT LAYER)

This table will contain the location of the waste bins in the study area.

 id_waste_bin (INT): waste bin numeric identifier.

 street (VARCHAR): name of the street where the waste bin is located.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 45 / 57

 geom (BINARY): layer’s geometry.

Parks and gardens

TREE (POINT LAYER)

This table will store the location of the trees in the study area.

 id_tree (INT): tree numeric identifier.

 species (VARCHAR): name of the tree species.

 height (DECIMAL): tree height.

 street (VARCHAR): name of the street where the tree is located.

 type (VARCHAR): Type of the tree: leafy or conifer.

 leaf (VARCHAR): Type of tree leafs: perennial or deciduous.

 geom (BINARY): layer’s geometry.

LAWN (POLYGON LAYER)

This table will contain the landscaped areas in the study area.

 id_lawn (INT): landscaped area numeric identifier.

 street (VARCHAR): name of the street where the landscaped area is located.

 surface (DECIMAL): extent (in m2) of the landscaped area.

 geom (BINARY): layer’s geometry.

PLAYGROUND_AREA (POLYGON LAYER)

This table will contain the playground areas in the study area.

 id_playground_area (INT): playground area numeric identifier.

 street (VARCHAR): name of the street where the playground area is located.

 cushion_area (DECIMAL): extent (in m2) of the cushioned area.

 geom (BINARY): layer’s geometry.

CHILD_GAME (POINT LAYER)

This table contains information about each game located in each playground area.

 id_child_game (INT): child game numeric identifier.

 description (VARCHAR): description of the game.

 type_game (VARCHAR): type of the game.

 age (INT): age ranges to use the game.

 geom (BINARY): layer’s geometry.

SPORT_AREA (POLYGON LAYER)

This table will contain the sport areas in the study area.

 id_sport_area (INT): sport area numeric identifier.

 street (VARCHAR): name of the street where the sport area is located.

 type (VARCHAR): type of sport area, such as: sandbox, sports court, fronton…

 description (VARCHAR): description of the area, such as: football field, basketball

court…

 geom (BINARY): layer’s geometry.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 46 / 57

Urban mobility

TRAFFIC (LINE LAYER)

This table stores the information about the roads horizontal signaling.

 id_traffic (INT): traffic numeric identifier.

 layer (VARCHAR): identifier of the official 1:500 scale cartography of the Vitoria-

Gasteiz City Council containing these elements.

 description (VARCHAR): Description of the elements contained.

 geom (BINARY): layer’s geometry.

CYCLE_PATH (LINE LAYER)

In this table it will be stored the information about the cycle path route.

 id_cicle_path (INT): cycle path numeric identifier.

 street (VARCHAR): name of the street where the cycle path is located.

 place (VARCHAR): indicates where the cycle path runs, such as: sidewalk, road,

own lane…

 separator (VARCHAR): this field indicates if the cycle path is physically separated

from the other road elements.

 vertical_sign (VARCHAR): Indicates if there is a vertical sign to signalize the cycle

path.

 geom (BINARY): layer’s geometry.

Configuration Repository

In this repository all the transversal components that interact with the rest of the layers of the

platform are included.

Security support

The platform have to guarantee certain issues of security along al the layers, modules and

components. Some of the features to be supported are:

 Support for the authentication and authorization

 Manage the access to any data or any component of the platform. On one hand at

low level, by managing the access to sensors, devices and infrastructure elements

and on the other hand, by managing the access of the applications and verticals.

 Guarantee the confidentiality of the data in the way that each role can only access to

the data allowed to this role.

 Define and manage security policies

 Provide a web interface to manage the users, roles and components

 Support different mechanisms of authentication as users, passwords, tokens, OAuth,

digital certificates… and any identification mechanism.

 Integration with other external user’s repositories

 Adaptation and configuration according to each city needs

Profiling

The platform has to guarantee the privacy and the security of all data stored and managed

by the different components and modules of the platform.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 47 / 57

The platform has to guarantee the secure and right sending and reception of the information

among different components of the platform and among the external services and the

platform. At least in both side of the data transference the privacy and security has to be

achieved.

The platform must guarantee different roles and type of users and different level of access to

data. The platform will allow the access or deny it applying the adequate level of permissions

to each role or application.

The consumers of the data could be applications, verticals, APIs, users, services…

There are three levels of security:

 Access to data: limiting the data that each users can access

 Access to the platform internal components: limiting the access to internal modules,

components and reports.

 Functionality: limiting the features and functionalities of each role and user.

Maintenance and support

In order to provide a continuous service and performance of the platform some maintenance

services has to be offered:

 Preventive maintenance: Managing some KPIs of performance in order to evaluate

the behavior and the needs of maintenance. Generating maintenance and preventive

actions.

 Corrective maintenance: Manage, apply corrective actions and solve the possible

errors, notifications and alarms that may occur in the platform. Possibility of using

smartphone applications and mobile devices for repairing and supporting the

corrective actions.

Real Time Repository

Real Time Repository is the database where all the data coming from sensors, devices and

infrastructure of the city are stored before being treated and processed. Most of the Real

Time Repository are based on Time Series. A Time Series is a series of data points indexed

in time order. Most commonly, a Time Series is a sequence taken at successive equally

spaced points in time. Thus it is a sequence of data in discrete time. For example: the

temperature of a home taken each 15 minutes or the position of a car taken each minute.

As the time sequence is different for each type of data coming from the sensors and devices

there will be type of tables where each data is stored. Time Series analysis comprises

methods for analyzing Time Series data in order to extract meaningful statistics and other

characteristics of the data. Time Series forecasting is the use of a model to predict future

values based on previously observed values. While regression analysis is often employed in

such a way as to test theories that the current values of one or more independent Time

Series affect the current value of another time series, this type of analysis of Time Series is

not called " Time Series Analysis", which focuses on comparing values of a single Time

Series or multiple dependent time series at different points in time

Time Series data have a natural temporal ordering. This makes Time Series analysis distinct

from cross-sectional studies, in which there is no natural ordering of the observations (e.g.

explaining people's wages by reference to their respective education levels, where the

individuals' data could be entered in any order). Time Series analysis is also distinct from

spatial data analysis where the observations typically relate to geographical locations (e.g.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 48 / 57

accounting for house prices by the location as well as the intrinsic characteristics of the

houses). A stochastic model for a Time Series will generally reflect the fact that observations

close together in time will be more closely related than observations further apart. In addition,

Time Series models will often make use of the natural one-way ordering of time so that

values for a given period will be expressed as deriving in some way from past values, rather

than from future values. Time Series analysis can be applied to real-valued, continuous data,

discrete numeric data, or discrete symbolic data.

As stated in the demonstrator description, the platform gets external data from energy

monitoring systems. In this case, the energy monitoring system is deployed in a Mondragon

University laboratory and measures electrical energy consumption of the lighting of the

laboratory. It also measures ambient temperature. The energy monitoring system can be

fitted with up to 11 sensors, each one measuring different magnitudes (electrical

consumption, gas consumption, water consumption, ambient temperature, etc.).

In order to store this information, we use a TSDB solution built on top of a SQL relational

database. We use PostgreSQL as the base SQL solution, complemented with the TimeScale

TSDB extension. PostgreSQL not only supports traditional relational datatypes (integer,

varchar, text, timestamp, etc.), but also JSON and JSONB data types and operations, which

enables storing non-relational/non-structured data in those columns.

Thus, the tables comprising the Real Time Data repository data model for the demonstrator

are described below, along with their columns and Data Types.

Figure 18: Real time repository data model for the demonstrator

Device

This table stores details about installed energy monitoring systems. These systems need to

be provisioned, activated and given an API Key to be able to send data to the Real Time

repository (actually, to the HTTP REST interoperability adapter that interacts with the Real

Time repository itself). This table stores all the values needed for the provisioning and

activation process.

● DeviceId INTEGER: Device’s auto numeric identifier inside the system.

● Serialnumber CHARACTER VARYING(128) NOT NULL: serial number of the

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 49 / 57

energy monitoring device.

● Activationcode CHARACTER VARYING(128) NOT NULL: activation code that the

device needs to provide to be activated.

● Feedid CHARACTER VARYING(128) NOT NULL: ID of the data stream the energy

monitoring device will use to send its data.

● Apikey CHARACTER VARYING(128) NOT NUL: the API Key the energy monitoring

device needs to use to store data in the Real Time repository.

Measurement

This table stores the individual values of the measurements sent by the energy monitoring

devices.

● MeasurementID INT: Measurement’s auto numeric identifier inside the system.

● DeviceId INTEGER NOT NULL: Foreign key referencing DeviceId column in Device

table.

● Timestamp TIMESTAMP NOT NULL: time stamp (in Universal Coordinated Time

format, without time zone) for the measurement.

● Sensor0 DOUBLE PRECISION NOT NULL: Measured value for the sensor attached

to the first input of the energy monitoring device. If the energy monitoring device did

not send any value for this sensor (e.g., it does not have a sensor attached to this

input), ‘0.0’ is stored.

● Sensor1 DOUBLE PRECISION NOT NULL: Measured value for the sensor attached

to the second input of the energy monitoring device. Again, 0.0 is stored if a value is

not received for this input.

● Sensor2 DOUBLE PRECISION NOT NULL: Measured value for the sensor attached

to the third input of the energy monitoring device. Again, 0.0 is stored if a value is not

received for this input.

● Sensor3 DOUBLE PRECISION NOT NULL: Measured value for the sensor attached

to the fourth input of the energy monitoring device. Again, 0.0 is stored if a value is

not received for this input.

● Sensor4 DOUBLE PRECISION NOT NULL: Measured value for the sensor attached

to the fifth input of the energy monitoring device. Again, 0.0 is stored if a value is not

received for this input.

● Sensor5 DOUBLE PRECISION NOT NULL: Measured value for the sensor attached

to the sixth input of the energy monitoring device. Again, 0.0 is stored if a value is not

received for this input.

● Sensor6 DOUBLE PRECISION NOT NULL: Measured value for the sensor attached

to the seventh input of the energy monitoring device. Again, 0.0 is stored if a value is

not received for this input.

● Sensor7 DOUBLE PRECISION NOT NULL: Measured value for the sensor attached

to the eighth input of the energy monitoring device. Again, 0.0 is stored if a value is

not received for this input.

● Sensor8 DOUBLE PRECISION NOT NULL: Measured value for the sensor attached

to the nineth input of the energy monitoring device. Again, 0.0 is stored if a value is

not received for this input.

● Sensor9 DOUBLE PRECISION NOT NULL: Measured value for the sensor attached

to the tenth input of the energy monitoring device. Again, 0.0 is stored if a value is not

received for this input.

● Sensor10 DOUBLE PRECISION NOT NULL: Measured value for the sensor

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 50 / 57

attached to the eleventh input of the energy monitoring device. Again, 0.0 is stored if

a value is not received for this input.

A TimeScale hypertable is created based on the Measurement table (using

create_hypertable command), partitioned on the “timestamp” column, setting a

chunk_time_interval3 of 1 week (604,800,000,000 microseconds, which is the unit

TimeScale uses for event time, when using a TIMESTAMP or TIMESTAMPTZ data types in

the original table):

 SELECT create_hypertable('Measurement, 'Timestamp',

 chunk_time_interval => 604800000000);

Open/external Data

Open Data is about transparency, about giving citizens access to the data their taxes help

create and it is about innovation by enabling software developers to transform that data into

useful applications that make city services available anytime, anywhere. Some cities have

already started working on becoming a city with distributed and public data.

In this context, data is a valuable asset and an essential resource for almost any activity in

our society that everyone assumes that it should be shared. Proper management of all the

data that occurs in the daily life of the city through automated processing will be pivotal to

understanding what is happening in our cities and to make the right decisions to ensure

optimal management of resources, as well as to meet the demands of its people efficiently.

In the context of SmartEnCity, Open Data can be used in two completely different contexts.

On the one hand third party Open Data can be an additional source of information to the

platform (gathered through the Acquisition/Interconnection Layer). On the other hand, the

platform can offer some of its own data to third parties through existing Open Data

interoperability standards.

In the context of the demonstrator, third party Open Data will be consumed to provide

additional environmental information in order to give more precise recommendations to final

users. Open Data related to climate and meteorological historic data and forecasts for the

following hours/days will be used. AEMET, Spanish Meteorological Agency, has an Open

Data portal (http://www.aemet.es/en/datos_abiertos/AEMET_OpenData) where it provides

documentation about the data they provide and several ways to consume its data. In the

case of the demonstrator, we will consume their HTTP(S) REST API.

That data will then be processed and stored in either of two repositories. The weather

forecast data will be added to the Vertical Data Repository, to provide better

recommendations to final users). The weather historic data will be added to the Historical

Data Repository, to be able to calculate those KPIs that depend on it, and to produce added-

value reports, dashboards and applications with mashed-up data that include climate and

meteorological data.

3
 Interval, in event time, that each chunk of data covers.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 51 / 57

During the development phase the visor for the Vitoria demonstrator will be accessible

through this URL: http://geoservergis.azurewebsites.net/gisviewer/viewer.do

Where login is needed, please use the following information for access to the platform to view

the information.

User: demo

Password: smartencity

For more detailed of the solution and to access specific repositories please contact project

partners listed on those sites.

5.2.3 User Guide

A visor guide for the demonstrator is available online. The guide presents the necessary

support to show data from the example implemented. Important information about access

and the visor guide next:

Access guide (Visor guide)

The map viewer provides access, throught OGC standards, to the set of geographic

information and has been designed for viewing and querying that information and creating

associated reports in a easy and simple way.

 The main functionalities offered by the viewer include navigation (zoom in, zoom out

and scroll through the map), enable and disable layers, get information about an item that is

querible by clicking on it and create KPI reports.

The browser in which geographic information is displayed occuppies most of the screen and

allows navigation in 2D. For optimal visualization it is recommended to use updated version

of Firefox, Chrome or Internet Explorer.

Figure 19: Viewer elements: zoom tools (1), map layers (2) and reports window (3)

1
2

3

http://geoservergis.azurewebsites.net/gisviewer/viewer.do

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 52 / 57

The following details the viewer functionalities:

1) Navigation

Navigation around the map can be done using one on the following options:

 Mouse navigation

It is the most intuitive form of navigation. It includes:

o Move the map: Click with the left mouse button and drag the map in the

desired direction: up, down, right and left.

o Zoom map at cursor location: Double click on the point of interest with the left

mouse button

o Zoom map at cursor location: Roll the mouse wheel forward to scale the map

to the cursor location or roll the mouse wheel back to reduce map scale to the

cursor location.

 Zoom tools

Zoom tools appear in the top right if the viewer (No. 1). It includes:

o Zoom in: Click the Plus (+) button to zoom in on the map.

o Zoom out: Click the Minus (-) button to zoom out on the map.

2) Map layers

Map layers menu allows seeing what layers are available in order to select them and add

them to the map. This menu is accessed by placing the cursor over the icon on the top left of

the viewer (No.2).

The list of layers available for visualization is displayed immediately. Beside each layer, there

is a check box that is used to turn a layer on or off .

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 53 / 57

In addition to the thematic layers, the viewer provides a base map as a background map by

default (OpenStreetMap). This map serves as support for locating information related to the

territory and cannot be deactivated.

3) Map tip

The viewer allows identifying and visualizing the alphanumeric information of the layers

loaded on the map. In order to identify an object displayed, place the cursor on the map and

click the left mouse button at the point where we want to get information. A window with the

information of the geographic object will be displayed. In order to close the window, click on

the icon on the top left.

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 54 / 57

Figure 20: Map tip

4) Reports windows

The reports window appears on the bottom right-hand corner of the viewer. This window

displays graphic and alphanumeric data of the KPIs in an easy-to-use interface. The

information is displayed according to the data selected in the different fields (address, date,

etc.). In order to see information about an specific time once the graphs are displayed with

the chosen criteria, run the mouse over the graph. A pop-up window will be displayed

immediately with the related alphanumeric information.

Figure 21: Report Window

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 55 / 57

Besides, there are some icons displayed in the window with additional functions:

 Access the full-screen mode.

 Display in a larger size each part of the report.

 Share the URL.

5.2.4 RA Demonstrator Functionality map

This section indicates which technologies, tools and mechanisms are used to build the

demonstrator. The matrix in Table 4 includes summary of the modules/layers from the RA

and indicating the technologies/tools/mechanisms used.

Layer Module Platform Technology, tool or mechanism

Acquisition/Interconnection
layer

Protocol Adapters Non applicable in this demonstrator.

Development kit Non applicable in this demonstrator.

Protocol Abstraction
Semantic

Non applicable in this demonstrator.

Notifications Non applicable in this demonstrator.

Security Non applicable in this demonstrator.

Plug-in New Adapters Non applicable in this demonstrator.

Knowledge layer

Historic Repo Hadoop File System (HDFS)

City Semantic No implemented in demonstrator

Real Time Repository

PostgreSQL complemented with the
TimeScale TSDB extension.

GIS Repository SQL Server deployed in Azure

Vertical Repository SQL Server deployed in Azure

KPI Repository SQL Server deployed in Azure
Structural Data
Repository SQL Server deployed in Azure

Real Time Processing No implemented in demonstrator

Batch Processing Aggregation of data using Azure tools

Analytics Reporting with Power BI in Azure

Interoperability layer

Open Data Non applicable in this demonstrator.

Development Kit Non applicable in this demonstrator.

APIs Non applicable in this demonstrator.

Security Non applicable in this demonstrator.

Intelligent Services layer Non applicable in this demonstrator.

Support layer

Audit Non applicable in this demonstrator.

Monitoring Non applicable in this demonstrator.

Logging Non applicable in this demonstrator.

Schedule Non applicable in this demonstrator.

Platform Management Non applicable in this demonstrator.

Repo Config

Azure provides support layer modules as
basis services to manage the platform using
a configuration repository.

Connectors Non applicable in this demonstrator.

Table 4: RA functionality – Platform functionality matching

file:///C:/Users/flarrinaga/Dropbox%20(MGEP)/flarrinaga/Proiektuak/SmartEnCity2016/WP/WP6/T6.2/Aportaciones%20Rev06/Tablas%20ET.xlsx%23RANGE!_Toc471369445
file:///C:/Users/flarrinaga/Dropbox%20(MGEP)/flarrinaga/Proiektuak/SmartEnCity2016/WP/WP6/T6.2/Aportaciones%20Rev06/Tablas%20ET.xlsx%23RANGE!_Toc471369445
file:///C:/Users/flarrinaga/Dropbox%20(MGEP)/flarrinaga/Proiektuak/SmartEnCity2016/WP/WP6/T6.2/Aportaciones%20Rev06/Tablas%20ET.xlsx%23RANGE!_Toc471369446
file:///C:/Users/flarrinaga/Dropbox%20(MGEP)/flarrinaga/Proiektuak/SmartEnCity2016/WP/WP6/T6.2/Aportaciones%20Rev06/Tablas%20ET.xlsx%23RANGE!_Toc471369447
file:///C:/Users/flarrinaga/Dropbox%20(MGEP)/flarrinaga/Proiektuak/SmartEnCity2016/WP/WP6/T6.2/Aportaciones%20Rev06/Tablas%20ET.xlsx%23RANGE!_Toc471369448
file:///C:/Users/flarrinaga/Dropbox%20(MGEP)/flarrinaga/Proiektuak/SmartEnCity2016/WP/WP6/T6.2/Aportaciones%20Rev06/Tablas%20ET.xlsx%23RANGE!_Toc471369449

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 56 / 57

6 Conclusions, deviations and outputs for other WPs

There are two main results produced in Task 6.3. The first result is a demonstrator available

online. The demonstrator or prototype is a platform where the data models necessary for

SmartEnCity are implemented. The deployed platform agrees with the Reference

Architecture described in Task 6.2 (SmartEnCityD6.2, 2017). The demonstrator offers the

data models necessary to build the CIOP in the lighthouses. The data models are used by

means of an example (specific data flow). Section 5.2.3 includes access to the

demonstrator´s user guide (online).

The prototype is a specific instantiation of the Reference Architecture. A demonstrator or

prototype consists of a technological solution that fulfils the requirements of a Reference

Architecture and provides the modules and functionality specific for the domain it represents.

Several demonstrators built with different technologies and frameworks can agree with a

common Reference Architecture and consequently be valid instantiations or implementations

of that architecture. The development and deployment of the reference architecture could

vary for the different demonstrators. Thus other technologies and tools might be used to build

and manage the data models.

Data models are the real representation of a domain. Data models necessary to represent

the Smart City domain have been constructed with the requirements available at this stage.

Demonstrator work packages (WP 3, 4 and 5) could use these data models to implement the

solutions to be developed in their lighthouses. Different implementations for the data models

are also valid. They have to agree with the Reference Architecture definitions given in

Section 4. Most common data models such as KPIs and infrastructure (structural and

configuration repositories) might not change but new verticals and specific implementations

of those verticals might differ from the ones propose here. Verticals in most cases are

application dependent. In summary, the platform complements the CIOP framework

presented in Task 6.2 with the data models.

The second result is outlined in this document. The description of the CIOP Reference

Architecture data models is included in section 4. The document includes a general

description of data model identified for the architecture including the type of data collected,

the relation to other data models and the possible technologies to be used.

No deviations have been produced according to the dates and content of the deliverable with

respect to the proposed plan.

The outputs produced in this deliverable will have effects mainly on other activities of the

WP6 and on activities related with the deployment of the CIOP platform in the three

lighthouse cities (Vitoria-Gasteiz WP3, Tartu WP4 and Sonderborg WP5).

D6.3 – Data model architecture implementation

SmartEnCity - GA No. 691883 57 / 57

7 References

AENOR CTN-178. (2015). UNE 17804:2015.

https://www.aenor.es/aenor/normas/ctn/fichactn.asp?codigonorm=AEN/CTN%20178

#.WG58xBvhC71.

Ralph Kimball, L. R. (1998). The Data Warehouse Lifecycle Toolkit : Expert Methods for

Designing, Developing, and Deploying Data Warehouses. In L. R. Ralph Kimball, The

Data Warehouse Lifecycle Toolkit : Expert Methods for Designing, Developing, and

Deploying Data Warehouses.

SmartEnCityD6.1. (2016). SmartEnCity Deliverable 6.1: CIOP Functional and Non-Functional

Specifications.

SmartEnCityD6.2. (2017). SmartEnCity D6.2 "CIOP architecture generic implementation".

SmartEnCityD7.9. (2017). SmartEnCityD7.9 "Data Collection Approach".

Wikipedia. (2016, December). https://en.wikipedia.org/wiki/Reference_architecture.

	0 Publishable Summary
	1 Introduction
	1.1 Purpose and target group
	1.2 Contributions of partners
	1.3 Relation to other activities in the project
	1.4 Reference Architecture and Demonstrator (data models)

	2 Objectives
	2.1 Objectives of WP
	2.2 Objectives of Task 6.3

	3 Overall Approach
	4 SmartEnCity CIOP Reference Architecture Data Models
	4.1 Reference Architecture in SmartEnCity
	4.2 Data Models
	4.2.1 Vertical Data Repository
	4.2.2 KPI Repository
	4.2.3 Historical Data Repository
	4.2.4 Structural Data Repository
	4.2.5 GIS Structural Data Repository
	4.2.6 GIS Repository
	4.2.7 Configuration Repository
	4.2.8 Real Time Repository

	5 SmartEnCity Demonstrator (Data Model)
	5.1 Demonstrator design and development
	5.2 Demonstrator Description
	5.2.1 Demonstrator data flow
	5.2.2 Data Models for demonstrator
	Vertical Data Repository (Energy)
	DeviceSetup
	Unit
	MeasureType
	Measurement
	Gateway
	Gateway Model
	Location

	KPI Repository
	Kpi
	ClassKpi
	Class
	ClassType
	ReportKpi
	Report
	Unit
	Measure

	Historical Data Repository
	Structural Data Repository
	Country
	City
	District
	Building
	Household

	GIS Structural Data Repository
	Building
	Transportation
	Vegetation
	WaterBody
	CityFurniture
	Building
	Thematic surface
	Surface geometry

	GIS Repository
	Urban Structures
	Street furniture
	Parks and gardens
	Urban mobility

	Configuration Repository
	Security support
	Profiling
	Maintenance and support

	Real Time Repository
	Device
	Measurement

	Open/external Data

	5.2.3 User Guide
	Access guide (Visor guide)

	5.2.4 RA Demonstrator Functionality map

	6 Conclusions, deviations and outputs for other WPs
	7 References

